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Validation
Automatic Test Procedures

Validating deterministic software is straightforward – the same input should always produce the same output.

However, because simulators contain random subroutines (e.g., for mating, reproduction and mutation), they

are not deterministic and therefore cannot be validated by simple input/output expectations.

The first step towards validation involved testing the complex object-oriented structure of the software. A

test suite was implemented with the Test library of Boost (v. 1.54; http://www.boost.org), and a robust

and e�cient series of automatic tests was developed. These tests, which can be run by end users, check that

instances of classes are created correctly, and that deterministic member functions produce expected results

(e.g., modification of correct attribute values). Each class in the C++ code is checked independently.

The test suite is available via the commands:

> make test

> ./test

These test functions have been validated on multiple platforms, including Linux (Ubuntu 13.04, Fedora 17

and Mint 14), Mac OS X (10.8) and Windows (7 and 8).

Theoretical Expectations

As the output of SMARTPOP is non-deterministic, alternative checks based on mathematical results from

theoretical population genetics have been developed to confirm that the system is behaving correctly.

Results from a large number of simulations were compared against values expected under coalescent theory

[1]. For example, the mean and variance of the time to the most recent common ancestor (TMRCA) assuming

a constant population size [2, 3, 4] is:
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The time to the most recent female common ancestor was simulated for mitochondrial DNA (mtDNA) in a

constant sized population with random mating to approximate the Canning’s model (i.e., the theory for which

the equations above were derived [5]). Figure 1 shows that the mean and variance of 1,000 simulations do not
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Figure 1 Time to the most recent (female) common ancestor for mtDNA as a function of the female population size. Red lines
show theoretical values; black lines show values simulated by SMARTPOP. Thick lines show the mean; dotted lines show the
standard deviation.

vary from theoretical expectations (Student’s t test: Pmean = 0.95, Pvariance = 0.70). This test procedure was

repeated for both male and female lineages (i.e., mtDNA and Y chromosome) for a range of population sizes.

Second, the simulation model distributes the number of children per woman as a Poisson random variable.

We confirmed that simulations produce the correct distribution (i.e., a mean and variance of 2 for constant

sized populations).

Third, mating systems were tested by comparing the observed and expected number of mates per individual.

Under monogamy, each individual must have no more than one mate. Under polygamy, the mean number of

mates must be close to one with some non-zero variance.

Comparisons with Coalescent Simulators

Coalescent simulators, such as MS [6] and SIMCOAL [7], are used widely in the community to produce simulated

population genetics datasets. As such programs reconstruct genetic lineages backward-in-time, they necessarily

have strong assumptions (e.g., random mating). To validate our forward-in-time simulator, we compared data

simulated by SIMCOAL and SMARTPOP under random mating for defined sets of parameters (e.g., mutation

rate and sequence length). To ensure direct comparability, SMARTPOP simulations were first allowed to reach

equilibrium by running them for a large number of generations beyond the expected TMRCA.

The two models di↵er in a second key feature: the backward-in-time process is controlled by the e↵ective

population size, while the forward-in-time process is controlled by the census population size. To account for

this di↵erence, each SMARTPOP simulation was run under a random census population size, the corresponding

e↵ective population size was inferred from the resulting genetic data, and a paired SIMCOAL simulation was
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Figure 2 Pairwise diversity (✓⇡) of mtDNA in datasets simulated with SMARTPOP (red line and orange points) and SIMCOAL
(blue line and green points). Each dot represents a diversity estimate from one simulated dataset. Dashed lines show the local
regression to the mean.

run with this value. The mean and variance of several genetic diversity estimators were then compared for both

datasets. The two methods produce highly concordant results (Figures 2 and 3).

Metamorphic Testing

As software has increased in complexity, a new test procedure (metamorphic testing [8]) has been developed to

address the problem of validating complex software systems. Within the last few years, metamorphic testing

has begun to be applied to bioinformatics software [9, 10]. The approach leverages scaling properties of the

simulation model (“metamorphic relations”), for which a defined change in the output can be predicted for a

defined change in the input.

The primary challenge is the identification of metamorphic relations appropriate to the problem. Theoretical

population genetics suggests several scaling relations. The following cases have been tested in SMARTPOP:

• If the mutation rate is multiplied by a factor x, then the diversity estimators S, ✓w and ✓⇡ scale linearly

with x.

• If the e↵ective population size is multiplied by a factor x, then the diversity estimators S, ✓wand ✓⇡ scale

linearly with x.

Because the coalescent comparisons described earlier were performed manually, only a relatively small set of

parameters could be tested. Metamorphic testing allows the validation process to be scaled up to a large number

of test parameters.

Mean values for 1,000 simulations were tested using a random set of starting parameters (e.g., population

size and mutation rate) with x drawn from a random discrete (integer) uniform distribution, Unif (1, 5). In

all cases, di↵erences between the means of x⇥E(parameter) and E(x⇥ parameter) were less than 10%, thus

confirming that the metamorphic relations hold for the simulation software.
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Figure 3 Allelic heterozygosity (HA) of mtDNA in datasets simulated with SMARTPOP (red line and orange points) and
SIMCOAL (blue line and green points). Each dot represents a heterozygosity estimate from one simulated dataset. Dashed lines
show the local regression to the mean.

Summary Comparison

To speed up analyses, several summary statistics are calculated directly within SMARTPOP. To validate these

estimators, a series of checks were implemented.

Because most related programs were designed to handle small sample sizes, the population-level dataset

simulated by SMARTPOP was sampled randomly. DNA sequences for these simulated individuals were im-

ported into COMPUTE [11] and ARLEQUIN v. 3.5 [12], and the same set of summary statistics returned by

SMARTPOP was calculated. The values obtained by SMARTPOP, COMPUTE and ARLEQUIN were then

compared across 1,000 simulated datasets (Table 1). Di↵erences in values were negligible – integer summaries

were identical; non-integer summaries exhibited extremely low variance due to rounding error. All exceptions

(✓w, ✓⇡ and Tajima’s D) result from the implementation of slightly di↵erent equations.
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Summary statistics Formula in SMARTPOP Comparison Comparison
with COMPUTE with ARLEQUIN

Segregating Sites S = number of segregating sites 0 0
Haplotypes h = number of haplotypes 0 0

Heterozygosity (HA) HA = N
N�1

⇣
1�
Ph

i=1
f2
i

⌘
NA 5.1⇥ 10�5

Heterozygosity (HN ) HN = 1
S

N
N�1

PS

i=1

⇣
1�
P4

j=1
f2
j

⌘
NA 8.5⇥ 10�4

Watterson’s Theta ✓w = SPi=N�1

i=1
1
i

a 1.8⇥ 10�6

Homozygosity Theta ✓H = 1
(1�H) � 1 NA 1.4⇥ 10�3

Theta Pi ✓⇡ = N
N�1

Ph

i=1

Ph

j=1
dist (i, j) b 4.7⇥ 10�6

Tajima’s D D = ✓⇡�✓wr�
b1� 1

a1

�
1
a1

S+

⇣
b2�n+2

a1n +
a2
a2
1

1
a2
1
+a2

⌘
S(S�1)

c 1.0⇥ 10�2

with a1 =
Pn�1

i=1
1
i

a2 =
Pn�1

i=1
1
i2

b1 = n+1
3(n�1)

b2 =
2(n2+n+3)
9n(n�1)

Table 1 Comparison of summary statistics calculated with SMARTPOP, COMPUTE and ARLEQUIN. The comparison columns show
the mean di↵erence in summary values, ‘NA’ if the summary is not implemented in the comparison program, or an equation if the
implementation di↵ers from that of SMARTPOP.

a: Not comparable since the formula implemented in COMPUTE is ✓w =
Pi=S
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b: Not comparable since the formula implemented in COMPUTE is ✓⇡ =
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c: Not comparable as Tajima’s D is a function of ✓w and ✓⇡ , both of which di↵er in COMPUTE.
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Model Implementation
Forward-in-time simulators produce individuals and their DNA sequences using an explicit set of demographic,

social and genetic models. While we use models that have wide acceptance in the field, their exact implemen-

tation has a direct impact on the simulations. The following sections describe these models in more detail, but

much more extensive information is available on the project website (http://smartpop.sourceforge.net).

Demographic Models

Population size can either be constant or change through time, as defined by the user. Population size is

controlled internally via the number of o↵spring. Let Nt be the size of the parent generation. The number

of o↵spring is then calculated using the following demographic function with size change variables a, b and c

defined by the user:

Nt+1 = a+ bNt + cN

2
t

This is a general population size change equation that allows linear, exponential and logistic growth and

decline. Once the total size of the next generation is defined, each female (or male in the case of polyandry) is

assigned a random number of o↵spring drawn from a Poisson distribution conditioned on the desired population

size. At an individual level, the number of o↵spring for each female (or male) is a Poisson random variable

constrained by the fact that exactly Nt+1 o↵spring are born in the population as a whole.

Social Models

SMARTPOP currently allows several mainstream mating systems to be run.

• Monogamy

Males and females are paired randomly to mate. No individual can be paired with two or more di↵erent

mates. The number of o↵spring per couple is a Poisson random variable.

• Polygamy

Males and females are paired randomly to mate, with no constraint on mates per individual. The number

of mates per individual is a binomial random variable, while the number of o↵spring per couple is a

Poisson random variable.

• Polygyny

Males and females are paired randomly to mate, with no constraint on mates per male. A female can only

mate with one male. The number of mates per male is a binomial random variable, while the number of

o↵spring per female is a Poisson random variable.

• Polyandry

Males and females are paired randomly to mate, with no constraint on mates per female. A male can only

mate with one female. The number of mates per female is a binomial random variable, while the number

of o↵spring per male is a Poisson random variable.

• Random mating

Males and females are paired randomly to mate, with no constraint on mates per individual. The number

of mates per individual is a binomial random variable, while there is no constraint on the number of

o↵spring per individual.

Each mating system contains an option for full and half sibling mating avoidance.

Defining Starting Conditions

Unlike backward-in-time methods, such as the coalescent, forward-in-time simulations are highly dependent

on their starting point. This problem has been raised by other studies [13], but there is little consensus on

how to define the initial population. Most programs start from a ‘null’ population comprising individuals
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Figure 4 Simulations across a range of bu↵ering values showing times to equilibrium (vertical colored lines).

that are genetically identical [14]. In such cases, it is typically advised to run the simulations “long enough”

(i.e., some long, but undefined period of time) for the system to reach an equilibrium state. This long ‘pre-run’

stage is often discarded as a burn-in phase, but can require substantial runtime, especially for large populations.

Other programs allow simulations to start from a real population genetic dataset [15], but this requires pre-

existing data and is also meaningful only for inferences about the future of a population, not its past.

SMARTPOP provides multiple methods to define a simulation’s starting point depending on the user’s needs

and research questions. By default, a ‘null’ population of identical individuals is used. This traditional approach

is acceptable if users can tolerate long runtimes, and importantly, the assumption of starting from a genetic

equilibrium is appropriate for their study system. However, these two assumptions are now critically limiting

for many population genetic inference settings.

To speed up simulations, SMARTPOP o↵ers an optional bu↵ering feature. This enacts accelerated evolution

using a high mutation rate, which stops after a user-defined diversity threshold is reached. This period of

accelerated evolution is then discarded as a burn-in, and the genetic dataset returned by SMARTPOP starts

from this point in the run. Bu↵ering is performed independently for each simulation to ensure di↵erent random

starting points.

Figure 4 explores a range of bu↵ering thresholds to accelerate an example simulation towards its state of

equilibrium. Simulations (n = 104) modeled a 3200 bp sequence of mitochondrial DNA with a mutation rate of

4⇥ 10�6 mutations/site/generation in constant sized monogamous populations of 100 individuals. Mean pair-

wise divergence (✓⇡) is plotted through time for each bu↵ering value. Table 2 presents the time in generations

taken by each set of simulations to reach equilibrium (defined here as |✓̄⇡(t) � ✓̄⇡(1)| < 1). The final column
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lists the CPU time in seconds to run 100 simulations to equilibrium using the bu↵ering phase. If the bu↵ering

threshold is set close to the mean pairwise distance at equilibrium (e.g., ✓ = 35), the simulation evolves to

the equilibrium state faster than if no bu↵ering were used (red). However, if the threshold is far from the

equilibrium point (e.g., ✓ = 100), the simulation can take longer to reach equilibrium. In terms of runtime,

simulating this example system with bu↵ering of ✓ = 35 is twice as fast as starting from the null ‘all individuals

identical’ set. To put this in perspective, optimal bu↵ering could save 1.5 hours of runtime over a standard run

of 1,000,000 simulations.

Bu↵ering threshold Time to equilibrium Runtime
(✓) (generations) (s)

No bu↵ering 180 1.02
25 120 0.63
30 80 0.58
35 15 0.46
40 65 0.66
50 125 0.97
60 130 1.14
75 170 1.42
100 180 1.99

Table 2 Speed gains from bu↵ering.

This discussion raises the issue of equilibrium and its appropriateness for biological modeling. All populations

are dynamic – they move, split, merge, grow and contract. Processes that are strongly time localized can have

genetic e↵ects over a much longer timeframe (see Figure 1B and 1C of the main article). The modularity of

SMARTPOP enables such dynamic studies by saving and reloading simulations with di↵erent parameters. This

allows users to define any starting point that is the outcome of some prior evolutionary process. For example,

it is possible to simulate a population of 100 settlers that recently migrated from a larger population of size

200. One way to do this would be to simulate a population (n = 200) until it reaches equilibrium (i.e., a long

time), save the simulated populations, and then reload them but this time sampling only 100 individuals. The

following command lines show this example:

./smartpop -p 200 -t 20 -nstep 50 -sample 50 -sizeMt 3200 -save file1

./smartpop -load file1 -p 100 -t 20 -nstep 50 -sample 50 -o fileresult -mtdiv

However, this process is time consuming, especially if it requires a large population to reach equilibrium.

Bu↵ering provides an alternative approach. Accelerated evolution can be used to reach a much higher diversity

than the equilibrium state, thus mimicking a small population that recently separated from a large one (such as

might occur during a settlement event). Figure 5 shows three sets of simulations for a monogamous population

of size 100 with the same parameters as the example above, but with di↵erent starting points: the null ‘all

individuals identical’ set (black), bu↵ering with ✓ = 75 (red) and down-sampling as described above (blue).

The null ‘all individuals identical’ method cannot be used to model a settlement event, and is shown here solely

to emphasize that all simulations eventually reach the same equilibrium point. Note, however, that bu↵ering

creates a diversity dynamic that is concordant with the sampling method, but bu↵ering is much faster (1.03 vs

2.36 s).

These simple examples illustrate the speed gain that bu↵ering can provide for di↵erent scenarios. As the sim-

ulated population size increases, this gain becomes even more pronounced and bu↵ering may become necessary

to keep runtimes to an acceptable level.
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Figure 5 Simulation of the genetic dynamics of 100 individuals who split from a population of 200 individuals with bu↵ering (red)
and sampling (blue) methods.
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